probinet.evaluation.link_prediction#
Functions for evaluating link prediction.
Functions
| 
 | Calculate the F1 score for the given predictions and data. | 
| Calculate the AUC (Area Under the Curve) for the given ranked list of predictions. | |
| 
 | Calculate the L1 loss between two matrices. | 
| 
 | Calculate the AUC (Area Under the Curve) for link prediction. | 
| 
 | Calculate the AUC (Area Under the Curve) for link prediction in multilayer data. | 
| 
 | 
- probinet.evaluation.link_prediction.calculate_f1_score(data0: ndarray, pred: ndarray, mask: ndarray | None = None, threshold: float = 0.1) float[source]#
- Calculate the F1 score for the given predictions and data. - Parameters:
- data0 (np.ndarray) – The original adjacency matrix. 
- pred (np.ndarray) – The predicted adjacency matrix. 
- mask (Optional[np.ndarray], optional) – The mask to apply on the data, by default None. 
- threshold (float, optional) – The threshold to binarize the predictions, by default 0.1. 
 
- Returns:
- The F1 score for the given predictions and data. 
- Return type:
- float 
 
- probinet.evaluation.link_prediction.compute_AUC_from_ranked_predictions(ranked_predictions: list[tuple[float, int]], num_positive_samples: int, num_negative_samples: int) float[source]#
- Calculate the AUC (Area Under the Curve) for the given ranked list of predictions. - Parameters:
- ranked_predictions (list[tuple[float, int]]) – The ranked list of predictions, where each tuple contains a score and the actual value. 
- num_positive_samples (int) – The number of positive samples. 
- num_negative_samples (int) – The number of negative samples. 
 
- Returns:
- The AUC value for the ranked predictions. 
- Return type:
- float 
 
- probinet.evaluation.link_prediction.compute_L1loss(X: ndarray, Xtilde: ndarray) float[source]#
- Calculate the L1 loss between two matrices. - Parameters:
- X (np.ndarray) – The first matrix. 
- Xtilde (np.ndarray) – The second matrix to compare against the first matrix. 
 
- Returns:
- The L1 loss between the two matrices, rounded to three decimal places. 
- Return type:
- float 
 
- probinet.evaluation.link_prediction.compute_link_prediction_AUC(data0: ndarray, pred: ndarray, mask: ndarray | None = None) float[source]#
- Calculate the AUC (Area Under the Curve) for link prediction. - Parameters:
- data0 (np.ndarray) – The original adjacency matrix. 
- pred (np.ndarray) – The predicted adjacency matrix. 
- mask (Optional[np.ndarray], optional) – The mask to apply on the data, by default None. 
 
- Returns:
- The AUC value for the link prediction. 
- Return type:
- float 
 
- probinet.evaluation.link_prediction.compute_multilayer_link_prediction_AUC(B: ndarray, u: ndarray, v: ndarray, w: ndarray, mask: ndarray | None = None) float[source]#
- Calculate the AUC (Area Under the Curve) for link prediction in multilayer data. - Parameters:
- B (np.ndarray) – The original adjacency tensor. 
- u (np.ndarray) – The first factor matrix. 
- v (np.ndarray) – The second factor matrix. 
- w (np.ndarray) – The third factor matrix. 
- mask (Optional[np.ndarray], optional) – The mask to apply on the data, by default None. 
 
- Returns:
- The AUC value for the link prediction in multilayer data. 
- Return type:
- float 
 
- probinet.evaluation.link_prediction.mask_or_flatten_array(mask: ndarray | None, expected_adjacency: ndarray) ndarray[source]#
- probinet.evaluation.link_prediction.mask_or_flatten_array(mask: None, expected_adjacency: ndarray) ndarray
- probinet.evaluation.link_prediction.mask_or_flatten_array(mask: ndarray, expected_adjacency: ndarray) ndarray
