probinet.evaluation.expectation_computation#
Functions for computing expectations and related metrics.
Functions
| 
 | Compute the dense Q matrix for the given adjacency tensor and parameters. | 
| 
 | Compute the normalization constant of the Bivariate Bernoulli distribution. | 
| 
 | Calculates the conditional expectation of a given set of parameters. | 
| Calculate the conditional expectation for given dynamic representation. | |
| 
 | Compute the expectations for the marginal distribution. | 
| 
 | Calculate the expectation for the adjacency tensor with an additional covariate. | 
| 
 | Return the vectors of joint probabilities of every pair of edges. | 
| 
 | Compute the expected value of the adjacency tensor. | 
| Compute the expected value of the adjacency tensor for multi-covariate data. | |
| 
 | Function to calculate the value of the Lagrange multiplier. | 
| Return the marginal and conditional expected value. | |
| 
 | Compute the mean lambda0 for all entries. | 
| 
 | Compute the mean lambda0 for all entries for dynamic reciprocity. | 
| 
 | Compute the mean lambda0_ij for only non-zero entries. | 
| 
 | Function to update the membership matrix 'u' using the Lagrange multiplier. | 
- probinet.evaluation.expectation_computation.calculate_Q_dense(A: ndarray, M: ndarray, pi: float, mu: float, mask: ndarray | None = None, EPS: float = 1e-12) ndarray[source]#
- Compute the dense Q matrix for the given adjacency tensor and parameters. - Parameters:
- A (np.ndarray) – Adjacency tensor. 
- M (np.ndarray) – Mean adjacency tensor. 
- pi (float) – Poisson parameter. 
- mu (float) – Mixing parameter. 
- mask (Optional[np.ndarray]) – Mask for selecting a subset of the adjacency tensor. 
- EPS (float) – Small constant to avoid division by zero. 
 
- Returns:
- Dense Q matrix. 
- Return type:
- np.ndarray 
 
- probinet.evaluation.expectation_computation.calculate_Z(lambda0_aij: ndarray, eta: float) ndarray[source]#
- Compute the normalization constant of the Bivariate Bernoulli distribution. 
- probinet.evaluation.expectation_computation.calculate_conditional_expectation(B: ndarray, u: ndarray, v: ndarray, w: ndarray, eta: float, mean: ndarray | None = None) ndarray[source]#
- Calculates the conditional expectation of a given set of parameters. - This function computes the conditional expectation of a multivariate random process based on the provided inputs. It incorporates a scaling parameter (eta) and optionally a mean tensor to compute the result. If the mean tensor is not provided, it defaults to computing a mean based on the input parameters u, v, and w. - Parameters:
- B – A 3-dimensional tensor used in the computation of the weighted mean. The tensor represents the relationship between variables in the multivariate process. 
- u – A 1-dimensional array representing the first set of variables contributing to the computation of the mean. Typically corresponds to a principal factor in the model. 
- v – A 1-dimensional array representing the second set of variables contributing to the computation of the mean. It complements the u array in forming the joint distribution. 
- w – A 1-dimensional array representing the third set of variables interacting with u and v to establish a comprehensive measure of centrality in the model. 
- eta – A scaling parameter applied to the tensor factors to adjust their weighted contribution to the overall mean measure of expectations. 
- mean – A precomputed 3-dimensional tensor mean to override the default computed mean. If None, the mean will be computed using u, v, and w. 
 
- Returns:
- A 3-dimensional tensor that represents the computed conditional expectation given the provided parameters. The tensor provides a context-sensitive measure of expectation, calculated as either a default weighted mean or incorporating a provided precomputed mean. 
- Return type:
- np.ndarray 
 
- probinet.evaluation.expectation_computation.calculate_conditional_expectation_dyncrep(B_to_T: COO | ndarray, u: ndarray, v: ndarray, w: ndarray, eta: float = 0.0, beta: float = 1.0) ndarray[source]#
- Calculate the conditional expectation for given dynamic representation. - This function computes the conditional expectation based on the dynamic representation of the input data, including arrays and graph-based data. It utilizes transformation and normalization techniques such as matrix transposition and scaling. - Parameters:
- B_to_T (GraphDataType) – Graph-based data structure representing relationships or transitions between nodes or states. 
- u (np.ndarray) – Input array representing data points or state variables. 
- v (np.ndarray) – Input array representing another set of data points or state variables related to u. 
- w (np.ndarray) – Auxiliary input array used for reference in the calculation. 
- eta (float, optional) – Scaling factor applied to the graph transformation. Default is 0.0. 
- beta (float, optional) – Scaling factor applied in the normalization computation. Default is 1.0. 
 
- Returns:
- Array representing the computed conditional expectation after applying the dynamic representation transformations. 
- Return type:
- np.ndarray 
 
- probinet.evaluation.expectation_computation.calculate_expectation(u: ndarray, v: ndarray, w: ndarray, eta: float) ndarray[source]#
- Compute the expectations for the marginal distribution. 
- probinet.evaluation.expectation_computation.calculate_expectation_acd(U: ndarray, V: ndarray, W: ndarray, Q: ndarray, pi: float = 1) ndarray[source]#
- Calculate the expectation for the adjacency tensor with an additional covariate. 
- probinet.evaluation.expectation_computation.compute_M_joint(U: ndarray, V: ndarray, W: ndarray, eta: float) list[source]#
- Return the vectors of joint probabilities of every pair of edges. 
- probinet.evaluation.expectation_computation.compute_expected_adjacency_tensor(U: ndarray, V: ndarray, W: ndarray) ndarray[source]#
- Compute the expected value of the adjacency tensor. 
- probinet.evaluation.expectation_computation.compute_expected_adjacency_tensor_multilayer(u: ndarray, v: ndarray, w: ndarray) ndarray[source]#
- Compute the expected value of the adjacency tensor for multi-covariate data. 
- probinet.evaluation.expectation_computation.compute_lagrange_multiplier(lambda_i: float, num: float, den: float) float[source]#
- Function to calculate the value of the Lagrange multiplier. 
- probinet.evaluation.expectation_computation.compute_marginal_and_conditional_expectation(B: ndarray, U: ndarray, V: ndarray, W: ndarray, eta: float) tuple[source]#
- Return the marginal and conditional expected value. 
- probinet.evaluation.expectation_computation.compute_mean_lambda0(u: ndarray, v: ndarray, w: ndarray) ndarray[source]#
- Compute the mean lambda0 for all entries. 
- probinet.evaluation.expectation_computation.compute_mean_lambda0_dyncrep(u: ndarray, v: ndarray, w: ndarray) ndarray[source]#
- Compute the mean lambda0 for all entries for dynamic reciprocity. 
