probinet.model_selection.labeling#
Module for extracting true labels and predicting labels.
Functions
|
Extract true labels from the design matrix X. |
|
Compute predicted labels. |
- probinet.model_selection.labeling.extract_true_label(X: DataFrame, mask: ndarray | None = None) ndarray [source]#
Extract true labels from the design matrix X.
- Parameters:
X – Pandas DataFrame object representing the one-hot encoding version of the design matrix.
mask – Mask for selecting a subset of the design matrix.
- Returns:
Array of true labels.
- Return type:
np.ndarray
- probinet.model_selection.labeling.predict_label(X: DataFrame, u: ndarray, v: ndarray, beta: ndarray, mask: ndarray | None = None) List[str] [source]#
Compute predicted labels.
- Parameters:
X – Pandas DataFrame object representing the one-hot encoding version of the design matrix.
u (Membership matrix (out-degree).) – Membership matrix (out-degree).
v (Membership matrix (in-degree).) – Membership matrix (in-degree).
beta (Beta parameter matrix.) – Beta parameter matrix.
mask (Mask for selecting a subset of the design matrix.) – Mask for selecting a subset of the design matrix.
- Returns:
List of predicted labels.
- Return type:
List[str]